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ABSTRACT 

The design and implementation of computer-based modeling systems and 

environments are gaining interest and importance in decision sciences and information 

systems. In spite of the increasing popularity of GUI-based operating systems, most of the 

algebraic modeling languages, today, are still file-oriented, text-based, and therefore 

require structured declarations and formal model definitions. The utilization of the 

standard graphical screen objects of a graphics-based operating system provides enhanced 

visualization of models and more cohesive human-computer interaction. 

The approach taken in this thesis is to explore the design and implementation of a 

graph-based modeling system focusing on computational dependencies between model 

components. Another important aspect of this research is the development of a user- 

friendly model formulation interface for algebraic modeling languages and systems; these 

facilitate the description and implementation of mathematical models by allowing the 

modeler to employ commonly known and powerful algebraic notation instead of language 

specific codes. 

The major conclusion of this thesis is that dependencies between variables are a 

foundation for building and using models and modeling languages. It also shows that this 

supports model documentation, validation, formulation, implementation, comprehension, 

maintenance and reuse. That is, it impacts nearly every step of the modeling life cycle. 
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I. INTRODUCTION 

A. OBJECTIVES 

The main objective of this research is to investigate the design and implementation 

of computer-based modeling systems and environments focusing on computational 

dependencies between model components. Another important aspect of this research is the 

development of a user-friendly model formulation interface for algebraic modeling 

languages and systems; these facilitate the description and implementation of mathematical 

models by allowing the modeler to employ commonly known and powerful algebraic 

notation instead of language specific codes. In spite of the increasing popularity of GUI- 

based operating systems, most of the algebraic modeling languages, today, are still file- 

oriented, text-based, and therefore require structured declarations and formal model 

definitions. The utilization of the standard graphical screen objects of a graphics-based 

operating system provides better visualization of models and stronger human-computer 

interaction. 

B. BACKGROUND 

1.        Model Abstraction 

A Model is a preliminary work or construction or schematic description of a 

system, theory, or phenomenon that accounts for its known or inferred properties and may 

be used for further study of its characteristics [Ref. 1]. It is often a simplified 

representation or description of a system or complex entity. In Figure 1, Taha [Ref. 2] 

presents the levels of abstraction of a real-life situation that lead to the construction of a 

model. Although a real situation may involve a substantial number of variables and 

constraints, usually only a fraction of these variables and constraints truly dominates the 

behavior of the real system Thus the simplification of the real system for the purpose of 

constructing a model should concentrate primarily on identifying the dominant variables 

and constraints as well as other data pertinent to decisions making. 



Figure 1. Levels of Abstraction 

The assumed real-world system is abstracted from the real situation by concentrating on 

identifying the dominant factors (variables, constraints, and parameters) that control the 

behavior of the real system. The model, being an abstraction of the assumed real-world 

system, then identifies the pertinent relationships of the system in the form of an objective 

and a set of constraints. 

Modeling is an indispensable activity in most organizations, whether mathematical 

in nature as in management science or operations research applications, or computer- 

oriented, as in the development of information systems [Ref. 3]. Model management is an 

interdisciplinary pursuit which combines elements of operations research (OR), artificial 

intelligence (AI), database management, management science (MS), cognitive science, and 

decision support (among others), each of which is an accepted discipline in its own right 

[Ref. 4]. 

2.        Decision Support Systems 

Decision Support Systems (DSS) are interactive computer based systems, which 

help decision makers utilize data and models to solve unstructured problems [Ref 5]. A 

critical component of a decision support system is the model management system, 

Figure 2, [Ref. 6]. Model management systems aim to facilitate the use of formal 

mathematical models for decision making [Ref. 7]. 
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Figure 2. DSS Components 

A model management system is effective when the user is able to build a model for several 

decision making situations, understand the model representation, retrieve information 

regarding the model and the decision making situation, and use the model for problem 

solving [Ref. 8]. Gagliardi and Spera [Ref. 9] claim that a first step toward the 

construction of a good Model Management System (MMS) is the fulfillment of some 

desirable features such as: 

• generality, in order to encompass most of the modeling paradigm; 

• independence between model representation and the appropriate solver 

necessary to obtain its solution; 

• independence between model representation and its data; 

• management of the model's life-cycle; 

• high-level (intelligent) user interface. 



3. Data 

Models of any kind, regardless of sophistication and accuracy, may prove of little 

practical value if they are not supported by reliable data. In some situations, data may not 

be known with certainty. Rather, they are estimated by probability distributions. In such 

situations, it may be necessary to change the structure of the model to accommodate the 

probabilistic nature of the demand. This gives rise to the so-called probabilistic or 

stochastic models as opposed to deterministic models. The gathering of data may actually 

be the most difficult part of completing a model. 

4. Graphics 

According to Saaty, mathematical modeling consist of identification of variables 

and the dependencies among them [Ref. 10]. Dependency diagrams are useful tools to 

represent value dependencies between variables of the model [Ref. 11]. The advantages of 

using a graphical model management system over a textual system include greater 

flexibility and ease of use [Ref. 12]. 

5. Structured Modeling 

Structured Modeling [Ref. 13 and 14] was developed as a comprehensive response 

to the perceived shortcomings of modeling systems available in the 1980s. It is a 

systematic way of thinking about models and their implementations that is based on the 

idea that every model can be viewed as a collection of distinct elements, each of which has 

a definition that is either primitive or based on the definition of other elements in the 

model. Elements are categorized into five types (so-called primitive entity, compound 

entity, attribute, function, and test), grouped by similarity into any number of classes 

called genera, and organized hierarchically as a rooted tree of modules so as to reflect the 

model's high-level structure. It is natural to diagram the definitional dependencies among 

elements as arcs in a directed acyclic graph. Moreover, this dependency graph can be 

computationally active because every function and test element has an associated 

mathematical expression for computing its value. The spirit of the research presented here 



is closest to that of Geoffrion's work on structured modeling, particularly to the genus 

graphs used in structured models. 

6.        Modeling Languages 

Modeling languages are tools for implementing large-scale iterative schemes and 

provide a means for connecting user's functions, solvers and interfaces. If people could 

deal with mathematical programs in the same way that algorithms do, the formulation and 

generation phases of modeling might be relatively straightforward. In reality, however, 

there are many differences between the form in which human modelers understand a 

problem and the form in which algorithms solve it. Conversion from the "modeler's form" 

to the "algorithm's form" is consequently a time-consuming, costly, and often error-prone 

procedure [Ref. 15]. 

Modeling languages are designed to express the modeler's form in a way that can 

serve as direct input to a computer system. Then the translation to the algorithm's form 

can be performed entirely by computer, without the intermediate stage of human 

translation. Modeling languages can help to make mathematical programming more 

economical and reliable; they are particularly advantageous for development of new 

models and for documentation of models that are subject to change. An algebraic 

modeling language is a popular variety based on the use of traditional mathematical 

notation to describe objective and constraint functions. An algebraic language provides 
n 

computer-readable equivalents of notations such as x, + yj,, 2^ ay*Xj, x}- > 0, and jeS that 

would be familiar to anyone who has studied algebra or calculus. Familiarity is one of the 

major advantages of algebraic modeling languages; another is their applicability to a 

particularly wide variety of linear, nonlinear and integer programming models. The 

availability of an algebraic modeling language makes it possible to emphasize the kinds of 

general models that can be used to describe large-scale optimization problems. While 

successful algorithms for mathematical programming first came into use in the 1950's, the 

development and distribution of algebraic modeling languages only began in the 1970's. 

Since then, advances in computing and computer science have enabled such languages to 

become steadily more efficient and general [Ref. 16]. Mathematical programming provides 



a way of describing a problem and a variety of methods for solving it [Ref. 17]. However, 

today's modeling languages still lack many usability features of a GUI environment and 

require very strict syntax rules, which make them hard to learn and use. 

7.        Summary 

This research focuses on a fairly simple, though perhaps not widely used, element 

in the practice of modeling: computational dependencies between model components 

(chiefly between model variables). It proposes that dependencies between variables be a 

foundation for building and using models and modeling languages. It aims to show that 

explicit dependency specification can support model documentation, validation, 

formulation, implementation, comprehension, maintenance, and reuse. That is, it would 

impact nearly every step of the modeling life cycle. Finally, the research describes a GUI- 

based prototype modeling system that is based on these ideas and can be used in 

conjunction with most modeling languages in use today. 

C.        RESEARCH QUESTIONS 

With the maturity in modeling languages and solvers for mathematical models, it 

becomes possible to examine certain other questions in the practice of modeling: 

• How can the computational dependencies between model components (mainly 

model variables) be used in modeling? 

• Can the dependencies between variables be a foundation for building and using 

models and modeling languages? 

• How should these models, and their assumptions, be documented and reasoned 

with? 

• How can model structure be comprehended, preferably at a glance, without 

having to examine the detailed mathematical formulation (graph-based 

modeling)? 



• Is it possible to improve usability features and ease-of-use by adding an 

intermediate interface between the user and the modeling languages of today? 

• What other methods can be incorporated into, or used in conjunction with, 

existing modeling languages to make them even more powerful and useful? 

D. METHODOLOGY 

The initial research approach for this thesis was a combination of literature review 

of current books and periodicals, and site surveys of existing WWW sites and USENET 

newsgroups to obtain information for both requirements guidance and the DELPHI 

programming language. 

Once the preliminary requirements were analyzed, a prototype system was 

developed by using Delphi™ programming language, which is a visual, object-oriented, 

component-based Rapid Application Development (RAD) and database development tool 

for Microsoft Windows®. In order to get feedback from end users and get them involved 

with the actual system design, several usability tests were performed during system 

development. The feedback of the end users was analyzed to refine the GUI design of the 

prototype. 

E. CHAPTER OUTLINE 

Chapter II presents how the author envisions the modeling process. After 

introducing some basic definitions and notations, it discusses how to formalize this process 

and then make it a part of the modeling system. It also bolsters these ideas with several 

examples in order to clarify certain concepts. 

Chapter III describes the laws of indexing and the rules for using indexical 

structures. At the outset of the mathematical modeling development effort, these specific 

laws and rules would facilitate the refinement/validation of the new model (especially, 

during the generation of equations by using the functional forms). This chapter presents 

various kinds of checks, which could be performed by the system to ensure that the set of 



dependencies is consistent with the set of equations, in order to make more precise 

equations. 

Chapter IV discusses the system implementation phase of the application 

development. The chapter addresses issues associated with designing an appropriate user 

interface and selecting appropriate application development tools. 

Chapter V provides a summary of the thesis and contributions of this research. It 

also describes some of the further research opportunities in the topic area. 



II. CONCEPTUAL FRAMEWORK 

This chapter presents how the author envisions the modeling process. After 

introducing some basic definitions and notations, it discusses how to formalize this process 

and then make it a part of the modeling system. It also bolsters these ideas with several 

examples in order to clarify certain concepts. 

A.       OVERVIEW 

With the maturity in modeling languages and solvers for mathematical models, it 

becomes possible~and worthwhile~to examine the design and implementation of 

computer-based modeling systems and environments in the decision sciences and 

information systems. This paper focuses on computational dependencies between model 

variables. It proposes that model formulation can be supported by defining the variables 

and their dependencies between them. Once these model components are defined, then 

their utilization is pretty straightforward in conjunction with the widely used modeling 

languages of today. 

1.        Model Variables and Dependencies 

Mathematical modeling/formulation often begins with the identification of relevant 

variables and relationships among them [Ref. 10]. Dependency graphs are often used to 

display dependencies. In terms of the modeling/decision life cycle, the step of problem 

structuring occurs before model formulation; dependency graphs are a useful tool for 

problem structuring [Ref. 11]. In the model management and modeling languages 

literature though, there are only a few papers that attempt to make use of these ideas. 

Dependencies are an important component of Geoffrion's structured modeling framework; 

genus graphs are explicitly used in the development of structured models [Ref. 14]. 



a.        Dependency Diagrams 

A computational dependency from variable X to variable Y represents the 

problem assumption (or model requirement) that the value of Y changes as a function of 

the change in the value of X. Nodes and directed arcs are the major elements of a 

dependency diagram. Nodes represent sets, variables, or indexed variables. Directed arcs 

represent dependencies between variables and the direction of dependency. Value of one 

variable (Y) changes as value of the other (X) changes. Figure 3 introduces the basic 

elements of a dependency diagram (Read as "Y depends on X"). 

Figure 3. Elements of a Dependency Diagram 

For example, since revenue depends on sales price and sales quantity, we get the 

dependency diagram that is shown in Figure 4. 

Figure 4. Dependencies 
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It should be evident that the set of computational dependencies for a 

problem is model-specific; different model formulations for a problem may have different 

dependencies. Two separate formulations may also have the same dependencies. 

An important semantic consideration in developing dependency diagrams is 

to separate the dependencies that arise due to relationships between components in the 

model from those that arise due to the modeling task (e.g., optimization) applied to the 

model. 

b.        Dependency Types 

Directed arcs can be extended to indicate the behavior (e.g., 

increasing/decreasing, direct/inverse, linear/nonlinear, logarithmic/exponential, etc.) and 

type (e.g., structural, definitional, or computational) of the dependency. 

Structural and Definitional dependencies exist in a model definition, 

regardless of what task (e.g., optimization of some function, or simulation, etc.) is to be 

performed on that model. These are dependencies that are assumed in the problem 

definition. Computational dependencies are those that arise due to the execution of the 

computational task associated with the model. 

Structural dependency between X and Y. When the data structure of Y is 

dependent on the value of X. E.g., X is a set of cities, and Y is , say, d(j, k) - the distance 

between cities j and k. 

Definitional dependency between X and Y: When the value of Y is, by 

definition of X and Y, a function of the value of X. E.g., if Y is Total Cost, and X is 

Acquisition Cost. Or, the value of an outcome variable is a function of the values of 

decision variables and other input variables and uncontrollable variables. 

Computational dependency between X and Y: When the value of Y is 

computed as the result of executing a model, with a given task, where X is one of the 

inputs of the model and Y is an output. E.g., the optimal value of some decision variable is 

a function of the various input values. 

11 



c. User Interface 

Extensive research has been done in the area of model management 

systems [Ref. 18]. While most of the research has been directed towards model 

representation [Ref. 19], little effort has been directed towards the user interface of a 

model management system [Ref. 20]. Portability concerns also have implications for the 

user interface [Ref. 17]. The user interface is critical to the success of a model 

management system. Although highly sophisticated OR and statistical models exist today, 

the effective use of these models depends significantly on a good user interface [Ref. 14]. 

d. Model Manager 

The objective of the prototype program, Model Manager, is to facilitate 

the creation, comprehension, and maintenance of mathematical models via the explicit 

representation of computational dependencies between variables in the model. The user of 

this program declares sets, variables, and test elements and then states the dependencies 

between them using nodes and directed arcs in a GUI screen. Then the user declares the 

type and the behavior of the dependency. Using these inputs, the system generates the 

model expressions in functional forms. The user works with these equations and completes 

them, if necessary. Any necessary changes are made first at the dependencies level. 

Various kinds of checks are performed by the system to ensure that the set of 

dependencies is consistent with the set of equations. By using the modeling rules 

(indexical equivalence, dimensional equivalence, and model structure --e.g., linear 

programming--), the program refines/validates functional forms in order to make more 

precise equations. Then the user completes/changes suggested equations. The program 

then checks for syntax/logic errors in order to verify the validity of the equations again. 

Errors in areas such as parentheses and punctuation can virtually be eliminated. By 

encoding the general template required by the modeling system, much of the code 

surrounding the actual equations should be automatically generated. Finally the program 

generates actual code and saves the model in the file format of the modeling language of 

choice or HTML document. 

12 



2.        Dependencies in Modeling and the Modeling Life Cycle 

Dependency diagrams that capture computational dependencies are used as a basic 

problem structuring tool. The idea is that an unstructured problem description can first be 

given some formal structure by conceptualizing and explicitly representing the 

dependencies between the variables of interest. In general, these dependencies are model 

specific and therefore influence the form of any specific mathematical model that is 

constructed. That is, any detailed mathematical formulation ought to be consistent with 

the dependencies laid out in the dependency graph. In the practice of modeling, however, 

dependency graphs are rarely used and no modeling language provides features for explicit 

representation and use of dependency graphs. 

We believe that dependency graphs can play a useful role in model management. 

They serve not only the model formulation phase by representing the qualitative problem 

in a more structured way, but also serve as model documentation once the model is 

specified mathematically. They also enhance model comprehension, which should facilitate 

model maintenance and model reuse. Automatic validation can be performed. The 

documentation is active; that ensures it will be used. Further, it does not just act as a 

guard; it actually can help in the development of the model specification. That is, the 

"code" that represents the model code can be partially generated based on the dependency 

graph. 

a.        Dependency Diagram: EOQ Example 

Consider the well-known lot size inventory management model. The input 

variables are D, h, c, and A; output variables are q, n, and TC. Mathematically, the 

relevant equations in the model are: 

AD   h.Q 
TC = -—+-zL+c.D 

Q       2 

2. AD 
Opt{Q) = Q^^-ir 

13 



n = 
Q 

and Opt(n) = 
D 

Opt(Q) 

TC: Total cost 

A: Setup cost per order 

D: Demand 

Q: Order quantity 

n: Number of orders 

h: Holding cost 

c: Unit cost 

Q*: Optimal order quantity 

b.        Dependencies in the EOQ Model 

The dependencies between model components are shown in Figure 5. 

Figure 5. Dependency Diagram for the EOQ Model 

14 



Or textually; 

TC depends on c Q* depends on h 

TC depends on h Q* depends on A 

TC depends on A Q* depends on D 

TC depends on D n depends on D 

TC depends on Q n depends on Q* 

n depends on Q 

It is easy to extend this representation. For example, suppose one wanted to add a new 

output variable S (total setup cost); 

S = n.A 

then, the following two dependencies must be added: 

S depends on A 

S depends on n 

Consider, for the moment, that only the various dependencies have been defined in 

developing the model so far; i.e., the exact equations have not been developed. Let us 

examine how a modeling system centered around the idea of a dependency graph can 

assist in the development and management of a model for this problem. 

c. Generation of Model Expressions (Functional Form) 

First, we argue that from the dependencies given above, we —or a 

computer program- should be able to generate the following equations: 

15 



S=fi(n,A) 

n =f2 (D, Q) 

TC=f3(A,D,Q,h,c) 

Q=f4(A,D,h) 

where fi ,f2 ,f3 and/4 are some mathematical functions. 

Of course, the formulation is incomplete, yet it provides certain function forms that any 

complete model should be consistent with. If we were to combine dimensional 

information, we can make the equations more precise; alternately we could use that 

information to validate the functional form developed by the user. The dependency 

diagram could be used to convey the model structure and assumptions at a glance. 

Therefore, even for this simple problem, dependencies could be useful in model 

formulation, validation, comprehension, and reuse. 

d.        Dependency Diagrams: Transportation Model 

Now consider a more interesting example, one that makes use of index 

sets. Now we examine another well-known model, Transportation Model. The following 

variables are defined in this model, the last two being test variables that represent the 

constraints in the model. 

Cap (i): Supply capacity at source i 

Dem (j) : Demand at destination./ 

Out (i): Total actual flow out of source i 

In (j) : Total actual flow into destination j 

Flow (i, j) : Actual flow from i toy 

Cost (i, j) : Cost of unit flow from source i to destination 7" 

TC: Total cost for all flows 

Test elements that represent the constraints in the model: 

Ti (i): Capacity test for source i 

T2 (j): Demand fulfillment test for destination j 

16 



e. Dependencies in the Transportation Model 

By examining the standard problem definition, we are able to specify the 

following dependencies between the variables. Textually: 

TC depends on Cost (i, j) 

TC depends on Flow (i, j) 

In (j) depends on Flow (i, j) 

Out (i) depends on Flow (i, j) 

Tj (i) depends on Cap (i) 

Ti (i) depends on Out (i) 

T2 (j) depends on Dem (j) 

T2 (i) depends on In (j) 

f. Generation of Model Expressions (Functional Form) 

From this we should be able to derive the following equations: 

TC =fj (Cost (i, j), Flow (i, j)) 

In(j)=f2(Flow(i,j)) 

Out (i)=f3 (Flow (i,j)) 

Ti (i) - gi (Cap (i), Out (i)) 

T2(i)=g2(Dem(j),In(j)) 

where, once again, fi, f2, and /j are some mathematical functions, and gi and g2 are 

conditional expressions with the same truth value as Ti and T2. Again, these dependencies 

could be useful in model formulation, validation, comprehension, and reuse. 
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g.        Generation ofEquational Forms Using Indexical Rules 

However, more can be achieved by exploiting the indexical information 

contained in the model. This information is combined with a model formulation rule that 

requires model expressions to be indexically homogeneous. That is, all terms in an 

expression must have the same indexical (where the indexical is defined as the unbound 

index variables in the expression). Assuming for now that the only indexical operation is 

the summation (£) operator, it is easy to see that the equations above can be further 

specified as shown below: 

TC = X X f(Cost(i, j), Flow(i, j)) 
i    j 

or 

/ A 

'   J J 

(Eq.2.1) 

(Eq. 2.2) 

In{j) = ^Flow{i,j) (Eq. 2.3) 

Out(i) = 2l/Flow(i,j) (Eq. 2.4) 

Ti(i) = Cap(i) OP Out(i) 

T2(i) = Dem(j) OP In(j) 

(Eq. 2.5) 

(Eq. 2.6) 

where OP is some comparison operator. 
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It may be noticed that Eq. 2.3 and Eq. 2.4 are completely specified in this manner. 

By considering additional information -such as the type model being developed (a linear 

program)- the equational forms can be further constrained and made more complete. The 

goal, though, is not to automate the development of the mathematical formulation on the 

basis of the dependency diagram. In general, there may still be far too many possible 

formulations. The point is that these formulations must all satisfy a variety of constraints 

that derive from the dependency diagram. 

3.        Dependencies in Other Domains 

Diagrams are used to facilitate problem solving in mathematics, physics, chemistry, 

engineering, economics, business, and other scientific areas. Research indicates that users 

understand and use diagrams easily and more efficiently than textual comprehension. 

Graphical representations help users structure the problem better [Ref. 21]. Diagrammatic 

representations meet the criteria of descriptive and procedural adequacy for many types of 

problems and diagrams have traditionally been used in certain types of problem solving 

[Ref. 22]. Larkin and Simon [Ref. 23] show that diagrams can be searched more efficiently 

and need less storage for representation. Advances in the scientific world without the use 

of diagrams would be difficult [Ref. 22]. 

Computer science, for example, makes use of diagrammatic approach in many 

areas extensively. Entities and their dependencies are often presented with diagrammatic 

representations in various contexts. Entity relationship (ER) diagrams and semantic object 

models (SOM) in database design, state diagrams in automata theory, neural networks in 

artificial intelligence (AI), object model, dynamic model, and functional model 

representations in object modeling technique (OMT), network diagrams in computer 

networks, data flow diagrams (DFD) and structure charts in structured systems design, 

and traceability model diagrams in requirements engineering are some of the most 

common ones. Most of the code generators utilize graphical representations. Dependency 

graphs are also used as intermediate representations in optimizing compilers and software 

engineering. Drawings of compiler data structures such as syntax trees, control flow 
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graphs, dependency graphs, are used for demonstration, debugging and documentation of 

compilers. 

B.       SUMMARY 

Dependencies between model variables, as represented in dependency diagrams, 

are a tool for problem structuring and are a foundation for development of a formal 

mathematical model. They are often used, informally, by model builders in the early stages 

of model formulation. They are sometimes taught in courses on modeling, occasionally 

employed in modeling textbooks, and almost nonexistent in a formal sense in modeling 

languages. If incorporated into modeling languages and systems, they could be useful in 

model formulation, validation, maintenance, and reuse. 

However, experience with similar situations in other domains (such as software 

development) indicates that model builders will usually not record the dependencies until 

they are forced to, or unless recording those dependencies provides a more tangible 

reduction in the model specification effort. It is, of course, additional work to document 

these dependencies [Ref. 24]. 

From the functional/equational form developed above, it is easy to write general 

purpose programs that will generate actual code in the modeling language of choice. 

Further, by encoding the general template required by the modeling system, much of the 

code surrounding the actual equations could be automatically generated. Errors in areas 

such as parenthesis and punctuation can virtually be eliminated. Thus, material support can 

be given to the model builder who would not have to develop the entire model from 

scratch by hand. We believe, this would be instrumental in encouraging modelers to 

conceive of models in terms of dependencies, document this conceptualization formally 

and explicitly, and use it subsequently in model formulation and maintenance. 
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III. REASONING WITH DEPENDENCIES 

This chapter describes the laws of indexing and the rules for using indexical 

structures. At the outset of the mathematical modeling development effort, these specific 

laws and rules facilitate the effort to refine/validate the new model (especially, during the 

generation of equations by using the functional forms). Based on the ideas of Bhargava 

[Ref. 25], this chapter presents various kinds of checks, which are performed by the 

system to ensure that the set of dependencies is consistent with the set of equations. 

A.       OVERVIEW 

Index sets, indexing of variables over these sets, and expressions containing 

indexing structures, are the most important elements of mathematical modeling. The laws 

of indexing and rules for using indexical structures are usually straightforward and rarely 

explicitly stated. However, with the advent of modeling languages that allow indexed 

expressions, it is important to state the semantics of indexing operations and expressions 

in a clear, implementation-independent manner. 

Indexical reasoning in modeling languages can be used for; 

• Validating expressions involving indexed variables, indexing structures, and 

indexical operators, 

• Constraining the formulation of expressions in a way that it satisfies indexing 

laws, 

• Deducing expressions that satisfy all laws. 

B.       FRAMEWORK 

1.        Objects, Terminology, and Notation 

The following examples illustrate the framework, concepts and objects relevant to 

indexical reasoning and how these are related. 
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a. Example 1 (Assignment Constraint) 

assign(i e /): ^ x,, = 1 

This constraint states that each individual (in the set I) must be assigned 

exactly one job (from set J). There are two index sets (I and J), and one indexed variable 

(xij) with index symbols (or indices) i and j being used to range over sets I and J 

respectively. The test element assign (i e I), indexed over set I, returns a value "true" 

when the mathematical condition is satisfied. The symbol S represents the indexical 

operator for summation, and j e J is an indexing structure. 

An important reason to distinguish between the index set itself and the 

index symbols used in writing expressions that range over the set, is that an indexed 

variable may be indexed over a set more than once. For example, consider the subtour 

elimination constraint in a traveling salesman problem. 

b. Example 2 (Sübtour Elimination Constraint) 

subtour(j € J,k e J):uj — m + n-yj,k <n — 1 

Here, the indexed variable yjik represents travel between nodes j and k, 

where both j and k range over the same set of nodes J. The variable n represents the 

number of nodes; uj and Uk are dummy variables, with the index symbols j and k again 

ranging over the same set J. 

In general, the objects relevant to indexical reasoning in mathematical 

modeling are: index sets, index symbols, variables (including indexed variables) and test 

elements (including indexed test elements), and indexical operators. We will also define a 

function   —the indexical—over the indexed expressions in the model. For now, we use our 

example to explain what this means: the indexical of xj is {i, j}; the indexical of ^xij is 
j 

{i}; the indexical of assign(/ e I) is {i); and the indexical of n is 0. 
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Since our discussion of these objects is largely at the meta-level, we need 

certain additional notation to the sorts (or sets) of these objects and members of these 

meta-level sets. In Table I, let V denote the set of index sets and y denote any member of 

T; Q denotes the set of index symbols, and co its members; 0 denotes the set of variables 

and 0its members; Y denotes the set of test elements and f a member of W. Let A denote 

the set of indexed expressions and A a particular expression. Let 0 denote the set of 

indexical operators, and 6 its members. Finally, let A denote the power set of index 

symbols, and <5its elements (i.e., subsets of Q). 

OBJECT 

TYPE 

NOTATION 

FOR 

SORT MEMBER 

Set V Y 

Index Symbol Q CO 

Variable $ 4> 
Test Element T * 

Indexed Expression A X 

Indexed Operator 0 e 
Power set of Q A ö 

Table I. Objects and Notations 

2.        Indexical Reasoning 

We now define the indexical function i : A h-»A. That is, for each indexical 

expression X, its indexical -the set of index symbols that are free in that expression-is a 

subset ö of index symbols. The semantics of this function are defined in two parts: first, 

for the primitive expressions (variable and test elements) and second for the compound 

expressions involving these objects. 

23 



The indexical of a variable is simply the set of index symbols used in defining it. 

The indexical of a test element is, similarly, the set of index symbols used in defining it. 

The indexical of compound expressions is defined in the following rules: 

*(Ai + A2) = *(Ai)   iff   *(A0=*(A2) (Eq.3.1) 

1 (Ai - A2) = 1 (Ai)   iff  1 (Xi) = 1 (A2) (Eq. 3.2) 

* (Ai * A2) = 1 (AO u 1 (A2) (Eq. 3.3) 

1 (Ai / A2) = 1 (AO u 1 (A2) (Eq. 3.4) 

* (AiA2) = 1 (AO u 1 (A2) (Eq. 3.5) 

*(5>i)      =   i(Xi)\ö (Eq.3.6) 

r(^:A)        =   1 (i/r)iff 1 (i/r)= 1 (X) (Eq. 3.7) 

3.        Dimensional Balance 

Dimensional arithmetic, or the calculus of dimensions, involves operations on 

dimensions analogous to the arithmetic operations on numbers. Transformations of units 

of measurement are required in model solution and model integration. Dimensional 

simplification and verification of dimensional consistency of expressions is useful in model 

formulation and model validation [Ref. 26]. 

Bradley and Clemence [Ref. 27] states that one aspect of model development that 

has received little automated support is the verification that the algebraic representation of 

the model correctly represents the modeler's intention. This intention is expressed in the 

form of explanatory descriptions which are associated with each numeric-valued symbol in 

the model. These descriptions are a necessary part of any modeling effort because they 

assign real world meaning to the model data and computation results. The computer 

manipulates numbers -the meaning assigned to the data and the results is the responsibility 

of the modeler who is doing a "dimensional" check of each model function and constraint. 

This is done by replacing each numeric-valued symbol with its explanatory description and 

then applying two kinds of dimensional calculus. One is the calculus of measurements 

units: multiplication and division of units and a unit analysis to verify that pure numbers 
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that are added, subtracted or compared have the same scale of reference. The other kind is 

concerned with what the symbol represents (e.g., apples, cars) and which of its properties 

are being measured (e.g., cost, height, weight/time). 

Bhargava [Ref. 26] presents the laws of dimensional consistency and dimensional 

arithmetic. The following sub-sections will explain these laws. 

a.        Laws of Dimensional Consistency 

The laws for obtaining dimensionally consistent (d.c.) expressions are 

stated below: 

• Two functional expressions may be added or subtracted only if they are 

dimensionally equivalent (d.e.). (Expressions of the form <p + f, <f) - f are 

d.c. iff 4> and f are d.e.) 

• Two functional expressions may be compared for equality or inequality 

(resulting in a conditional expression) only if their dimensions are equivalent. 

(Expressions of the form <f> = ty, <f> < f, <j) > ifr, <f) < f, and 4> > ^are d.c. iff 

4> and ifr are d.e.) 

• Two functional expressions may be multiplied irrespective of their dimensions. 

(Expressions of the form <f> * ^are d.c. if <p and <p are d.c.) 

• Any dimensionally valid functional expression can be inverted. (Expressions of 

the form 1 / <p are d.c. if <p is d.c.) 

• The exponent of a functional expression must be dimensionless. (Expressions 

of the form (ff are d.c. only if i]r is dimensionless.) 

• The exponent of a functional expression can be fractional only if 

* each fundamental unit in the functional expression has a power that is a 

multiple of the inverse of that fraction, or 

* the functional expression is dimensionless. (Expressions of the form <p^ 

are d.c. if the fundamental units of (ff have integer powers, i.e., ^"is an 

integer, or if 0 is dimensionless, or if each fundamental unit in <p has a 

power that is a multiple of 1 / ifr.) 
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• Functions which can be expressed as power series (e.g., trigonometric 

functions, hyperbolic functions) can be applied only to dimensionless 

expressions. 

b.        Laws of Dimensional Arithmetic 

The laws of dimensional arithmetic are slightly different from that of 

standard arithmetic: 

• The dimensions of the sum (or difference) of two expressions is the same as 

the dimension of either of them if the two expressions have equivalent 

dimensions. Otherwise, it is not defined (see laws for dimensional consistency). 

• The dimension of the product (quotient) of two expressions is the product 

(quotient) of the dimensions of the two expressions. A dimensionless 

expression has dimension UQ (= 1) which is an identity for dimensional 

multiplication. 

• The dimension of the power of an expression is the power of the dimension of 

the expression. 

• Any function of expression with dimension UQ yields an expression of 

dimension UQ. 

In their research, Bradley and Clemence [28] presents these principles: 

• The product or ratio of valid types is also a valid type; 

• For the operations of addition, subtraction, comparison (<, =, >), assignment, 

input, and output, both operands must have the same concept, quantity, and 

unit; 

• When simplifying expressions and considering automatic conversions, concepts 

are checked first, then quantities, and finally units. 

4.        Model Type 

The functional/equational forms can be further constrained and made more 

complete by considering additional information about the model type. For example, if the 
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type is a linear programming model, then we can conclude that only summation or 

difference signs will be used in equational forms. Similarly, if it is a non-linear program, 

then we can easily rationalize that product or quotient signs will be used in the model. 
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IV. IMPLEMENTATION 

This chapter discusses the system implementation phase of the application 

development. The chapter addresses issues associated with designing an appropriate user 

interface and selecting appropriate application development tools. 

A. APPLICATION DEVELOPMENT TOOL - BORLAND'S DELPHI™ 

The visual development methodology approach uses a visual object-oriented rapid 

application development (RAD) tool, in this case Borland's Delphi™, to quickly develop 

an application prototype. 

B. APPLICATION IMPLEMENTATION 

1. Functional Description of the Program 

Model Manager is composed of six sub-pages. The program interface is in 

a tabular form, labeled with each specific function. The "tabbed notebook" approach helps 

the user easily navigate between the pages. Commonly-used words for menu items are 

used in a standard order (i.e., File, Edit, View, Run, Help) to improve system usability. 

The same idea is used during the construction of all the other windows, pop-up/pull-down 

menus, and dialog boxes. 

2. Program Interface 

The "About" page, depicted in Figure 6, is the beginning page of the 

program. 
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Figure 6. About Screen of Model Manager 

When the user selects the "Welcome" tab of the program, the related 

welcome screen, Figure 7, appears. It is an introduction page which describes what the 

program is. The "Next >" button in this screen brings the "Model Information" message 

dialog box as shown in Figure 8. Here, the user defines the model and gives a name to it. 

The input fields in this page are optional. The modeler enters these information just for 

his/her own records. An alternative to using mouse or tab keys is to use shortcut keys 

(i.e., Alt+m and Alt+d). The same action can be done more than one way, which is an 

important usability issue for advanced users. This functionality is used very often 

throughout the program The "Next >" button in this page submits the information inputs 

and opens the "Dependencies" page. 
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Figure 7. Welcome Page 

Model Information 
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Input Variables: 
D: Demand 
h : Holding Cost 
c: Unit Cost 
A: Setup Cost per Order 
Q : Order Quantity 
n : Number of Orders 
TC: Total Cost 
Q*: Optimal Order Quantity 

M«d>      I        Cancel     j 

Figure 8. Model Information Screen 
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Figure 9. Dependencies Page 

Figure 9 shows the dependencies page. This is where the user constructs 

his/her model. On the left side of the screen there is a "palette". The user chooses the 

model components from this palette and defines them There are three components in the 

palette: 

D! 
Set 

o 
Variete Dependency 

When the user selects any one of the components, an associated input box is 

presented. Figure 10,11, and 12 show these input boxes respectively. 
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Figure 10. Input Box for Set Properties 
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Figure 11. Input Box for Variable Properties 

33 



Dependency Declaration 

^j depends oh m 
Dependency Iyperj 

I Dependency Sehavtar; 

3i 

~3\ 

JK_ j|      £ancel    | 

Figure 12. Input Box for Dependency Declaration 

The modeler enters the values for each kind of component and then presses 

"OK" button in order to submit the information to the database and close the input box. 

On the dependencies page (Figure 9), the user chooses an appropriate space and places 

the component by left-clicking the mouse. The user can move the component by holding 

down the left mouse button and dragging to some other coordinate; or he/she can right- 

click the mouse button on that component to see its properties as shown in Figure 13 and 

14. If the modeler wants to remove any component from the model, then he can click the 

right mouse button and select "Delete". Then a confirmation message dialog box appears 

as depicted in Figure 15; this protects the modeler from mistakenly deleting a node. 

Another functionality of the right mouse button is clicking it on an empty 

area of the dependencies page, which brings a pop-up menu shown in Figure 16. By using 

this menu, the user can reach the lists of the previously created components. Figure 17, 

18, and 19 show these view-only lists of databases. The other items in that pop-up menu 

are Clear, Print, and Help. 
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Figure 13. Right-Click on a Component 
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Figure 14. Properties Message Box 
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Figure 15. Delete Confirmation Message 
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Figure 16. Right-Click on an Empty Area 
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Figure 17. Message Box for Listing the Sets 
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Figure 18. Message Box for Listing the Variables 
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List Dependencies 

Figure 19. Message Box for Listing the Dependencies 

The different types of dependencies are represented with different color codes 

in the model: red for structural, blue for definitional, and black for computational 

dependency. These color codes and hints on almost every icon and model component help 

the user see the dependencies easily and visualize the whole model more clearly. 

After constructing the model, the user presses the "Next >" button and 

launches the "Functions" page. At this stage, the modeler can see his/her model in 

computer-generated functional form, Figure 20. He/she examines the functions, works 

with them and if necessary completes them Any changes have to be made first at the 

dependencies level. The functions page is a simple editor, which includes the basic editing 

functions. The modeler can use the icons, the shortcut keys, or right-click of mouse in 

order to make necessary changes in this editor. The user can also go back to dependencies 

page and make changes there, if necessary. Then he/she has to press the "Next >" button 

in that page in order to create the updated version of the functional forms. 
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Figure 20. Functions Page 

Once the modeler believes that the functional forms are what he/she 

wanted, then he/she must press the "Next >" button to create the real equations. These 

results, which appear in "Equations" page, are generated by using the modeling rules 

(indexical equivalence, dimensional balance, and model structure). Then the user should 

refine and validate the equations, which are suggested by the program. After the changes 

and corrections are made, the program checks the syntax and logic errors in order to 

verify the validity of the equations again. Errors in areas such as parenthesis and 

punctuation can virtually be eliminated. The equations page is almost the same as the 

dependencies page. It is also an editor with the same functionalities. Figure 21 shows the 

equations page. 
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Figure 21. Equations Page 

Finally, when the modeler presses the "Next >" button in the equations 

page, the program launches the "Exporter" page, where the actual code is generated by 

the computer. In the exporter page, Figure 22, there are three options to choose from. 

They are: 

mf£i 

AMPL, GAMS, and HTML. When the modeler selects any one of them then the program 

generates the actual code for that language. The user can save as a file format of the 

modeling language of choice or HTML document. 
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<HEAD> 
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Figure 22. Exporter Page 

If the modeler selects the HTML button, then he can also browse this code by 

running the Netscape Navigator directly from the program He/she should press the 

following button in order to that: 

The user can exit from the program anytime by clicking the exit button or the 

close icon of the title bar: 

When the user wants to close the program a message dialog box, shown in Figure 23, 

appears to confirm the command. 
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Figure 23. Exit Confirmation Dialog Box 

C.       MAINTENANCE 

In looking at the Visual Development Methodology (VDM), it becomes clear that 

the concept of system development phases becomes very blurred. The difference between 

requirements analysis and design, or the difference between implementation and 

maintenance, becomes harder to see because the building of the applications pervades 

virtually every area of the entire development cycle. 

Development begins in the very early stages of investigating the problem to be 

solved. Solving the problem identified is not the completion of the development process. 

Instead, this process will continue indefinitely. As long as there is a need for the 

application, developers should continue working on it. What was maintenance becomes 

implementation. 

The VDM means a redefining of the meaning of the maintenance phase. The VDM 

does not draw a line between maintenance and development. Maintenance becomes a part 

of the original development process itself and begins very early in the development effort. 

Therefore, the project presented in this thesis should be viewed as being in the 

maintenance mode right from the beginning, rather than at the end of the development life 

cycle. 

Throughout the development process, Delphi allowed the developer to make 

changes, often right in the presence of the users, to ensure that the interface design was 

satisfactory and met the needs and desires of those who will use the system. 
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V. CONCLUSIONS 

A.       SUMMARY 

In this thesis, it is suggested that diagrammatic representations improve 

comprehension and simplify problem structuring. In support of this, the thesis proposes 

dependency diagrams as a tool for problem structuring and as a foundation for 

development of a formal mathematical model. It proposes that dependencies between 

variables can be used for building and using models and modeling languages. 

An important aspect of this thesis is the development of a GUI-based model 

formulation interface for algebraic modeling languages and systems. These interfaces 

facilitate the description and implementation of mathematical models by allowing the 

modeler to use universal mathematical symbols and algebraic notation. This approach 

enhances the development process by replacing the requirements of language specific 

codes with a generalized modeling environment, which provides better visualization of 

model components and more interactive model management. 

This thesis also shows that dependency graphs can play a useful role in model 

management. These dependencies support almost every step of a modeling life cycle. They 

serve not only the model formulation phase by representing the qualitative problem in a 

more structured way, but also serve as model documentation, which should facilitate 

model maintenance and model reuse. Automatic validation can be performed. The 

documentation is active; that makes it more likely to be used. Further, it does not just act 

as a guard; it actually can help in the development of the model specification. That is, the 

"code" that represents the model can partially be generated based on the dependency 

graph. So, this graphical representation is an integrated approach towards model 

management. 
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B.        CONTRIBUTIONS 

One of the contributions of this thesis is that it highlights the lack of literature in 

providing guidance on computational dependencies between model components and the 

semantics of indexing operations and expressions in a clear, implementation-independent 

manner. In other domains, there is significant work on this topic which make use of these 

dependencies and their relations extensively. Dependency-based reasoning is more 

established in software engineering and software design than in mathematical modeling. 

Another contribution is the observation that although most current algebraic 

modeling languages are run on top of GUI-based operating systems, they are still file- 

oriented and text-based. Therefore, these languages require structured declarations and 

formal model definitions. They use strict syntax rules, notations, code words and data 

entry methods. Rosenthal [Ref. 17: pp. 7-32] explains the importance of the correct 

implementation of these rules with many informative bullets in his GAMS tutorial. Since 

average users generally cannot remember/control all of these rules, the use of the system 

becomes more error-prone. Whereas, in a GUI environment, most of the errors mentioned 

here would be eliminated automatically because the utilization of graphical objects forces 

the users to enter their inputs in a "standard" way. If the primary purpose and demand of 

GUI computing is to make computers easier to use for everyone, then why should this 

demand not be applied to the current modeling languages? This thesis has provided some 

insight that modelers can improve usability features and ease-of-use by adding an 

intermediate interface between the user and the modeling languages of today. This 

approach not only enables modelers to present the whole modeling process clearly but also 

helps to "see the big picture" in model management. 

The most significant contribution this thesis has made is to provide a tool, 

dependency diagrams, for problem structuring and as a foundation for the development of 

a formal mathematical model. The incorporation of this tool into modeling languages and 

systems facilitates model formulation, validation, maintenance and reuse. 
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C.       AREAS OF FURTHER RESEARCH 

The rapid growth of the Internet in general, the explosive growth of the World 

Wide Web in particular, creates new opportunities for the development and deployment of 

decision technologies for and by organizations and individuals [REF. 30]. The application 

presented in this thesis is well-suited for web-based development that would make it 

accessible to a broad range of users. By using Java technology, portability and platform- 

independence issues can be resolved. The user interface can also be improved. 

If it is implemented in the Java programming language, Model Manager could also 

be registered as a provider on DecisionNet [REF. 31, 32, 33, 34, 35, 36, and 37]. 

DecisionNet is a distributed, Web-based electronic market for decision technologies such 

as data, models, solution algorithms, and modeling environments. It acts as a broker 

between "providers" (owners of decision support technologies) and "consumers" (users of 

decision support technologies). This web-based approach also creates an opportunity for 

modelers to build their own models on the WWW. After building the model in Model 

Manager, the output file can be sent to the solvers through DecisionNet. DecisionNet 

allows a consumer to use a decision technology when he/she wants it. Also the consumer 

is free of the problem of owning and managing the software (use vs. own). 

If dependencies between model variables, as represented in dependency diagrams, 

are incorporated into modeling languages and systems in a GUI environment, they could 

be more useful in model formulation and the other phases of the modeling life-cycle. 

We hope that further enhancements will be made to this system, increasing its 

capability, web-orientation and ease-of-use. 
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